IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Ocean bottom geoacoustic characterization using surface ship noise of opportunity
Ren, Q.; Hermand, J.-P. (2012). Ocean bottom geoacoustic characterization using surface ship noise of opportunity, in: 2012 Oceans, Yeosu. Proceedings of a meeting held 21-24 May 2012, Yeosu, South Korea. Oceans (New York), : pp. (8 pp). hdl.handle.net/10.1109/OCEANS-Yeosu.2012.6263518
In: (2012). 2012 Oceans, Yeosu. Proceedings of a meeting held 21-24 May 2012, Yeosu, South Korea. Oceans (New York). Institute of Electrical and Electronics Engineers ( IEEE ): New York. ISBN 978-1-4577-2091-8. 1576 (2 Vols) pp., more
In: Oceans (New York). IEEE: New York. ISSN 0197-7385, more
Peer reviewed article  

Available in  Authors 
Document type: Conference paper

Keyword
    Marine

Authors  Top 

Abstract
    The broadband noise field of a ship of opportunity often exhibits environment dependent striation structure in the frequency-range plane. For the soft-layered sediment environment studied in this paper, the striation structure is critically determined by sub-bottom sound speed (C-bot), sediment thickness (H) and sediment sound speed (C-sed). Numerical simulations demonstrate that striations in different frequency bands have different sensitivities to the three critical parameters. The sensitivity differences are used here to progressively estimate the C-bot, H and C-sed. We first use low-frequency striation structure to estimate the C-bot, then obtain a preliminary estimation of the H and C-sed with a set of low-frequency striations, and finally find the best-fit solutions from previous estimates using high frequency striation structure. We processed passive ship run data collected in Mediterranean Sea in 2007. The good agreement between our results with active inversion methods demonstrates the accuracy of the method for ocean bottom geoacoustic characterization.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors