IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation
Weber, M.E.; Clark, P.U.; Kuhn, G.; Timmermann, A.; Sprenk, D.; Gladstone, R.; Zhang, X.; Lohmann, G.; Menviel, L.; Chikamoto, M.O.; Friedrich, T.; Ohlwein, C. (2014). Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature (Lond.) 510(7503): 134–138.
In: Nature: International Weekly Journal of Science. Nature Publishing Group: London. ISSN 0028-0836, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Weber, M.E.
  • Clark, P.U.
  • Kuhn, G.
  • Timmermann, A.
  • Sprenk, D.
  • Gladstone, R.
  • Zhang, X.
  • Lohmann, G.
  • Menviel, L.
  • Chikamoto, M.O.
  • Friedrich, T.
  • Ohlwein, C.

    Our understanding of the deglacial evolution of the Antarctic Ice Sheet (AIS) following the Last Glacial Maximum(26,000-19,000 years ago)(1) is based largely on a few well-dated but temporally and geographically restricted terrestrial and shallow-marine sequences(2-4). This sparseness limits our understanding of the dominant feedbacks between the AIS, Southern Hemisphere climate and global sea level. Marine records of iceberg-rafted debris (IBRD) provide a nearly continuous signal of ice-sheet dynamics and variability. IBRD records from the North Atlantic Ocean have been widely used to reconstruct variability in Northern Hemisphere ice sheets(5), but comparable records from the Southern Ocean of the AIS are lacking because of the low resolution and large dating uncertainties in existing sediment cores. Here we present two well-dated, high-resolution IBRD records that capture a spatially integrated signal of AIS variability during the last deglaciation. We document eight events of increased iceberg flux from various parts of the AIS between 20,000 and 9,000 years ago, in marked contrast to previous scenarios which identified the main AIS retreat as occurring after meltwater pulse 1A(3,6-8) and continuing into the late Holocene epoch. The highest IBRD flux occurred 14,600 years ago, providing the first direct evidence for an Antarctic contribution to meltwater pulse 1A. Climate model simulations with AIS freshwater forcing identify a positive feedback between poleward transport of Circumpolar Deep Water, subsurface warming and AIS melt, suggesting that small perturbations to the ice sheet can be substantially enhanced, providing a possible mechanism for rapid sea-level rise.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors