IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Impacts of salt marsh plants on tidal channel initiation and inheritance
Schwarz, C.; Ye, Q.H.; van der Wal, D.; Zhang, L.Q.; Bouma, T.; Ysebaert, T.; Herman, P.M.J. (2014). Impacts of salt marsh plants on tidal channel initiation and inheritance. J. Geophys. Res. Earth Surface, 119(2): 385-400. dx.doi.org/10.1002/2013JF002900
In: Journal of Geophysical Research. American Geophysical Union: Richmond. ISSN 0148-0227, more
Peer reviewed article  

Available in  Authors 

Keyword
Author keywords
    salt marsh; Spartina; tidal creek; biogeomorphology; ecosystemengineering

Authors  Top 
  • Schwarz, C., more
  • Ye, Q.H.
  • van der Wal, D., more
  • Zhang, L.Q.

Abstract
    At the transition between mudflat and salt marsh, vegetation is traditionally regarded as a sustaining factor for previously incised mudflat channels, able to conserve the channel network via bank stabilization following plant colonization (i.e., vegetation-stabilized channel inheritance). This is in contrast to recent studies revealing vegetation as the main driver of tidal channel emergence through vegetation-induced channel erosion. We present a coupled hydrodynamic morphodynamic plant growth model to simulate plant expansion and channel formation by our model species (Spartina alterniflora) during a mudflat-salt marsh transition with various initial bathymetries (flat, shoal dense, shoal sparse, and deep dense channels). This simulated landscape development is then compared to remote sensing images of the Yangtze estuary, China, and the Scheldt estuary in Netherlands. Our results propose the existence of a threshold in preexisting mudflat channel depth, which favors either vegetation-stabilized channel inheritance or vegetation-induced channel erosion processes. The increase in depth of preexisting mudflat channels favors flow routing through them, consequently leaving less flow and momentum remaining for vegetation-induced channel erosion processes. This threshold channel depth will be influenced by field specific parameters such as hydrodynamics (tidal range and flow), sediment characteristics, and plant species. Hence, our study shows that the balance between vegetation-stabilized channel inheritance and vegetation-induced channel erosion depends on ecosystem properties.
    Key Points
    Plant, flow and sediment interaction in response to various initial bathymetry Plant-flow interactions drive landscape development at initial flat bathymetry Initial bathymetry is able to influence the magnitude of plant-flow interactions

All data in IMIS is subject to the VLIZ privacy policy Top | Authors