IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Sedimentary growth pattern on the northern Argentine slope: The impact of North Atlantic Deep Water on southern hemisphere slope architecture
Preu, B.; Schwenk, T.; Hernández-Molina, F.J.; Violante, R.; Paterlini, M.; Krastel, S.; Tomasini, J.; Spieß, V. (2012). Sedimentary growth pattern on the northern Argentine slope: The impact of North Atlantic Deep Water on southern hemisphere slope architecture. Mar. Geol. 329-331: 113-125. hdl.handle.net/10.1016/j.margeo.2012.09.009
In: Marine Geology. Elsevier: Amsterdam. ISSN 0025-3227, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Preu, B.
  • Schwenk, T.
  • Hernández-Molina, F.J.
  • Violante, R.
  • Paterlini, M.
  • Krastel, S.
  • Tomasini, J.
  • Spieß, V.

Abstract
    Large sedimentary deposits consisting of several major contourite drifts were studied by means of high-resolution multichannel seismic data at the middle slope along the Northern Argentina Continental Margin to determine their evolutionary stages as well as to identify and assess the possible impact of Northern Source Deep Water (NSDW) on the slope architecture. The imaged contouritic sediments allow decoding on the regional paleo-oceanographic setting of the last 32 Ma.Earliest contouritic sedimentation can be observed close to the Eocene/Oligocene boundary based on an aggradational stacking pattern with a complex and wavy seismic facies, pointing toward a hydrodynamically turbulent flow pattern. This facies is most likely related to the opening of the Drake Passage associated with global cooling and a strengthening of surface, intermediate and deep ocean currents in the Southern Ocean. During the Middle Miocene plastered drift sequences with an aggradational reflection pattern were deposited. Their depositional style indicates weak, non-turbulent current conditions, which are interpreted to be related to a vertical shift of water mass interfaces caused by the first formation of NSDW during the Mid-Miocene climatic optimum. On top, the formation of plastered drift sequences led to the modern extent of the Ewing Terrace, which was probably controlled by the continuous strengthening and thickening of NSDW until the final closure of the Central American Seaway (CAS). During the Pliocene and Quaternary, after the complete closure of the CAS and under the influence of the full force of the NSDW, mounded plastered drift sequences are built upon the Ewing Terrace generating the modern slope morphology. Therefore, we suggest that deep-water production in the northern hemisphere plays a significant role by controlling the shape of the continental slopes in the southwestern South Atlantic since the Middle Miocene.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors