IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Diel echolocation activity of harbour porpoises (Phocoena phocoena) around North Sea offshore gas installations
Todd, V.L.G.; Pearse, W.D.; Tregenza, N.C.; Lepper, P.A.; Todd, I.B. (2009). Diel echolocation activity of harbour porpoises (Phocoena phocoena) around North Sea offshore gas installations. ICES J. Mar. Sci./J. Cons. int. Explor. Mer 66(4): 734-745. http://dx.doi.org/10.1093/icesjms/fsp035
In: ICES Journal of Marine Science. Academic Press: London. ISSN 1054-3139; e-ISSN 1095-9289, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    acoustic monitoring, North Sea, platform, porpoise echolocation, rigs-to-reef, T-POD

Authors  Top 
  • Todd, V.L.G.
  • Pearse, W.D.
  • Tregenza, N.C.
  • Lepper, P.A.
  • Todd, I.B.

Abstract
    Echolocation clicks of harbour porpoises (Phocoena phocoena) were detected with T-PODs, autonomous, passive, acoustic-monitoring devices, deployed from an offshore-exploration-drilling-rig and gas-production-platform complex in the Dogger Bank region of the North Sea from 2005 to 2006. Echolocation-click trains were categorized into four phases of the diel cycle: morning, day, evening, and night. Porpoises were present near (<200 m) the platform, and there was a pronounced diel pattern in echolocation activity; the number of porpoise encounters (visits) was greater by night than by day. The number of click trains with a minimum inter-click interval of <10 ms also increased at night. This was confirmed by a comparison of the ratios of feeding buzzes to search-phase clicks (feeding buzz ratios) and an analysis of the changes in pulse-repetition frequencies within each train. A reasonable interpretation of this pattern was that porpoises were feeding below or around the platform at night. The evidence for changes in activity during the morning and evening was less clear, so these may be transitional phases. The pattern of porpoise-echolocation behaviour around this platform is related most probably to the diel activity of their prey. If porpoises cluster regularly around such installations within 500-m shipping exclusion zones, they may be omitted from population surveys. We conclude that offshore installations may play an important role as nocturnal porpoise-feeding stations in an overfished environment, but that further replicated and controlled studies are required. These findings should be taken into consideration during offshore-installation-decommissioning decisions in the North Sea.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors