IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

North Atlantic magmatism controlled by temperature, mantle composition and buoyancy
Brown, E.L.; Lesher, C.E. (2014). North Atlantic magmatism controlled by temperature, mantle composition and buoyancy. Nature Geoscience 7(11): 820–824. hdl.handle.net/10.1038/ngeo2264
In: Nature Geoscience. Nature Publishing Group: London. ISSN 1752-0894, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Brown, E.L.
  • Lesher, C.E.

Abstract
    Large igneous provinces are characterized by anomalously high rates of magma production1. Such voluminous magmatism is commonly attributed to partial melting of hot, buoyantly upwelling mantle plume material2, 3. However, compositional heterogeneity in the mantle, caused by the subduction of oceanic crust, can also enhance magma production, diminishing the need for elevated temperatures associated with upwelling plumes4, 5. A plume origin for the North Atlantic large igneous province has been questioned because lava compositions correlate with crustal thickness, implying a link between magma productivity and mantle source composition4, 6. Here we use a numerical model that simulates upwelling and melting of compositionally heterogeneous mantle material to constrain the conditions that gave rise to magmatism in the North Atlantic. Using observations of lava compositions and volumes from the North Atlantic, we show that subducted crustal material represented less than 10% of the mantle source. We further show that mantle temperatures have remained elevated by 85–210 °C and increased mantle upwelling up to 14 times the rate of plate separation has occurred over the past 56 Myr. The enhanced temperatures and upwelling rates extended along more than 1,000 km of the Palaeogene rift, but are substantially more restricted along the modern Mid-Atlantic Ridge. These findings reflect the long-term manifestation of a mantle plume.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors