IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Structural, morphological and genetic variability in Halophila stipulacea (Hydrocharitaceae) populations in the western Mediterranean
Procaccini, G.; Acunto, S.; Fama, P.; Maltagliati, F. (1999). Structural, morphological and genetic variability in Halophila stipulacea (Hydrocharitaceae) populations in the western Mediterranean. Mar. Biol. (Berl.) 135(1): 181-189
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in Authors 

Keywords
    Diversity; Genetic diversity; Growth; Meadows; Sea grass; Cymodocea nodosa (Ucria) Ascherson, 1870 [WoRMS]; Zostera (Zostera) marina Linnaeus, 1753 [WoRMS]; MED, Western Mediterranean [Marine Regions]; Marine

Authors  Top 
  • Procaccini, G., more
  • Acunto, S.
  • Fama, P.
  • Maltagliati, F., more

Abstract
    Halophila stipulacea (Forssk.) Ascher. is a dioecious seagrass that colonized the Mediterranean basin probably following the opening of the Suez Canal (1869). Natural meadows have been reported since the end of the last century on the eastern side of the basin and only recently along the northern coast of Sicily. In the present study we examined the morphological and genetic variability of two natural meadows located along the Sicilian coast (Vulcano Island and Oliveri-Tindari coastal lakes). In order to determine morphological and genetic polymorphism, samples were collected at different depths (5, 15 and 25 m depth at the Vulcano site) and positions ledge vs mid-bed) within the meadows. Statistically significant differences in phenotypic features were found between the factors "depth" and "position" within the same meadow and between the two localities. Genetic diversity was assessed using randomly amplified polymorphic DNA and found to be high. Deep and shallow stands of the Vulcano Island meadow clustered in different positions in the UPGMA tree. The shallow Vulcano stand was found to be closer to the shallow Oliveri-Tindari meadow than to the deeper stand from Vulcano. Mantel's test did not allow rejection of the null hypothesis of independence of morphological and molecular distance matrices. We conclude that (i) H. stipulacea shows high morphological and genetic polymorphism, (ii) environmental and/or ecological barriers exist between different depths, and (iii) trends of morphological and genetic variability may be influenced by different environmental and/or ecological factors.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors