IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments
Hofmann, G.; Kelley, A.L.; Shaw, E.C.; Martz, T.R.; Hofmann, G.E. (2015). Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments. NPG Scientific Reports 5(9638): 9 pp. hdl.handle.net/10.1038/srep09638
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Hofmann, G.
  • Kelley, A.L.
  • Shaw, E.C.
  • Martz, T.R.
  • Hofmann, G.E.

Abstract
    Understanding how declining seawater pH caused by anthropogenic carbon emissions, or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here, we present the first high-frequency in-situ pH time-series in near-shore Antarctica from spring to winter under annual sea ice. Observations from autonomous pH sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an increase in temporal pH variability relative to spring and early winter, matching coastal pH variability observed at lower latitudes. Using our data, simulations of ocean acidification show a future period of deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctica marine species have an existing physiological tolerance of temporal pH change that may influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain difficult to characterize in the absence of sufficient physiological data on present-day tolerances. It is therefore essential to incorporate natural and projected temporal pH variability in the design of experiments intended to study ocean acidification biology.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors