IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation
Tine, M; Kuhl, H; Gagnaire, A; Louro, B; Desmarais, E; Martins, T; Hecht, J; Knaust, F; Belkhir, K; Klages, S; Dieterich, R; Stueber, K; Piferrer, F; Guinand, B; Bierne, N; Volckaert, F.A.M.; Bargelloni, L.; Power, M; Bonhomme, F; Canario, M; Reinhardt, R (2014). European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nature Comm. 5: 10 pp.
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

    Dicentrarchus labrax (Linnaeus, 1758) [WoRMS]; Marine

Authors  Top 
  • Tine, M
  • Kuhl, H
  • Gagnaire, A
  • Louro, B
  • Desmarais, E
  • Martins, T
  • Hecht, J
  • Knaust, F
  • Belkhir, K
  • Klages, S
  • Dieterich, R
  • Stueber, K
  • Piferrer, F
  • Guinand, B
  • Bierne, N
  • Volckaert, F.A.M., more
  • Bargelloni, L.
  • Power, M
  • Bonhomme, F
  • Canario, M
  • Reinhardt, R

    The European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors