IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Rapid responses to stress in Eurytemora affinis
Bradley, B.P.; Hakimzadeh, R.; Vincent, J.S. (1988). Rapid responses to stress in Eurytemora affinis, in: Boxshall, G.A. et al. (Ed.) Biology of copepods: Proceedings of the Third International Conference on Copepoda. Developments in Hydrobiology, 47: pp. 197-200. hdl.handle.net/10.1007/978-94-009-3103-9_17
In: Boxshall, G.A.; Schminke, H.K. (Ed.) (1988). Biology of copepods: Proceedings of the Third International Conference on Copepoda. Developments in Hydrobiology, 47. Kluwer Academic Publishers: Dordrecht. ISBN 90-6193-654-3. XII, 639 pp., more
In: Dumont, H.J. (Ed.) Developments in Hydrobiology. Kluwer Academic/Springer: The Hague; London; Boston; Dordrecht. ISSN 0167-8418, more

Available in Authors 

Keywords
    Adaptation; Stress proteins; Temperature; Marine
Author keywords
    Membrane lipids

Authors  Top 
  • Bradley, B.P.
  • Hakimzadeh, R.
  • Vincent, J.S.

Abstract
    affinis can adjust to temperature stress in a matter of hours. Adaptation is greater in a varying temperature than in a constant temperature, consistent with the estuarine habitat of this calanoid. The species has the capacity to adjust both in the short-term as individuals and also genetically over a number of generations. The adjustments have been examined at several levels of organization. In whole copepods the lime an individual becomes comatose when exposed to a 32 °C temperature and increasing by 1/2 °C at 5 min. intervals, has been used as a repeatable assay and gives a good prediction of survival at 30 °C, the ecological limit of the species in Chesapeake bay, USA. At the molecular and cellular levels, two adaptive mechanisms which have been observed in temperature stressed copepods are the synthesis of novel proteins and phase changes in plasma membrane lipids. Both of these mechanisms have potential for further understanding the adaptation of Eurytemora to variable temperatures. They may also have application as indicators of sublethal stress.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors