IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms
Zark, M.; Riebesell, U.; Dittmar, T. (2015). Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Science Advances 1(9): e1500531. hdl.handle.net/10.1126/sciadv.1500531
In: Science Advances. AAAS: New York. ISSN 2375-2548, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Zark, M.
  • Riebesell, U.
  • Dittmar, T.

Abstract
    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a “business-as-usual” emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m3 each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 µatm), and five more served as controls (400 µatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors