IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Zonal distribution of dissolved aluminium in the Mediterranean Sea
Rolison, J.M.; Middag, R.; Sterling, C.H.; Rijkenberg, M.J.A.; de Baar, H.J.W. (2015). Zonal distribution of dissolved aluminium in the Mediterranean Sea. Mar. Chem. 177: 87-100.
In: Marine Chemistry. Elsevier: Amsterdam. ISSN 0304-4203; e-ISSN 1872-7581, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Dissolved aluminium; Aluminum; Atmospheric deposition; Trace metals; Sediment resuspension; Mediterranean Sea; GEOTRACES

Authors  Top 
  • Rolison, J.M.
  • Middag, R.
  • Sterling, C.H.
  • Rijkenberg, M.J.A., more
  • de Baar, H.J.W., more

    Dissolved aluminium (Al) is an important tracer of atmospheric dust input to the oceans. The GEOTRACES expeditionto the highly dust impacted Mediterranean Sea afforded the opportunity to study the distribution of dissolvedAl in the Mediterranean Sea in detail. Interestingly, the elevated concentration of dissolved Al observedin Mediterranean surface waters (up to 80 nmol kg-1) is strongly correlated with salinity, both showing an increasefrom west to east due to mixing of low Al, low salinity Atlantic surface waters with high Al, high salinityMediterranean surface and intermediate waters. At intermediate depths (100–1250 m), a strong correlation betweendissolved Al and silicic acid (Si) was observed. Vertical mixing between surface, intermediate and olduplifted deep water between depths of 0 and 1300m is primarily responsible for the long recognized Al:Si relationshipat intermediate depths. However, since the subsurfacewaters have a surfacewater origin, vertical transportof Al and Si is required to maintain the high concentrations of dissolved Al and Si in Mediterranean deepwaters relative to surface waters. The most likely vertical transport mechanism is suggested to be biogenic particleswhichwouldthus be ultimately responsible for the Al:Si relationship at intermediate depths. Elevated concentrationsof dissolved Al relative to Si were observed in some Mediterranean deep waters with sedimentresuspension during episodes of deep water formation as the most likely source of the additional dissolvedaluminium.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors