IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean
Hauri, C.; Friedrich, T.; Timmermann, A. (2015). Abrupt onset and prolongation of aragonite undersaturation events in the Southern Ocean. Nat. Clim. Chang. 6(2): 172-176. hdl.handle.net/10.1038/nclimate2844
In: Nature Climate Change. Nature Publishing Group: London. ISSN 1758-678X, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Hauri, C.
  • Friedrich, T.
  • Timmermann, A.

Abstract
    Ocean acidification may lead to seasonal aragonite undersaturation in surface waters of the Southern Ocean as early as 2030 (ref. 1). These conditions are harmful to key organisms such as pteropods2, which contribute significantly to the pelagic foodweb and carbon export fluxes in this region3. Although the severity of ocean acidification impacts is mainly determined by the duration, intensity and spatial extent of aragonite undersaturation events, little is known about the nature of these events, their evolving attributes and the timing of their onset in the Southern Ocean. Using an ensemble of ten Earth system models, we show that starting around 2030, aragonite undersaturation events will spread rapidly, affecting ~30% of Southern Ocean surface waters by 2060 and >70% by 2100, including the Patagonian Shelf. On their onset, the duration of these events will increase abruptly from 1 month to 6 months per year in less than 20 years in >75% of the area affected by end-of-century aragonite undersaturation. This is likely to decrease the ability of organisms to adapt to a quickly evolving environment4. The rapid equatorward progression of surface aragonite undersaturation can be explained by the uptake of anthropogenic CO2, whereas climate-driven physical or biological changes will play a minor role.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors