IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [252592]
The relationship between the southern hemisphere annular mode and Antarctic Peninsula summer temperatures: analysis of a high-resolution model climatology
van Lipzig, N.P.M.; Marshall, G.J.; Orr, A.; King, J.C. (2008). The relationship between the southern hemisphere annular mode and Antarctic Peninsula summer temperatures: analysis of a high-resolution model climatology. J. Clim. 21: 1649-1668. http://dx.doi.org/10.1175/2007JCLI1695.1
In: Journal of Climate. American Meteorological Society: Boston, MA. ISSN 0894-8755; e-ISSN 1520-0442, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Annular mode, Antarctica, Surface temperature, Southern Hemisphere, Climate models

Authors  Top 
  • van Lipzig, N.P.M.
  • Marshall, G.J.
  • Orr, A.
  • King, J.C.

Abstract
    The large regional summer warming on the east coast of the northern Antarctic Peninsula (AP), which has taken place since the mid-1960s, has previously been proposed to be caused by a trend in the Southern Hemisphere Annular Mode (SAM). The authors utilize a high-resolution regional atmospheric model climatology (14-km grid spacing) to study the mechanisms that determine the response of the near-surface temperature to an increase in the SAM (?T/?SAM). Month-to-month variations in near-surface temperature and surface pressure are well represented by the model. It is found that north of ~68°S, ?T/?SAM is much larger on the eastern (lee) side than on the western (windward) side of the barrier. This is because of the enhanced westerly flow of relatively warm air over the barrier, which warms (and dries) further as it descends down the lee slope. The downward motion on the eastern side of the barrier causes a decrease in surface-mass balance and cloud cover. South of ~68°S, vertical deflection across the barrier is greatly reduced and the contrast in ?T/?SAM between the east and west sides of the barrier vanishes. In the northeastern part of the AP, the modeled ?T/?SAM distribution is similar to the distribution derived from satellite infrared radiometer data. The region of strongest modeled temperature sensitivity to the SAM is where ice shelf collapse has recently taken place and does not extend farther south over the Larsen-C Ice Shelf.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors