IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: a first open-access ensemble model
Hardy, S.M.; Lindgren, M.; Konakanchi, H.; Huettmann, F. (2011). Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: a first open-access ensemble model. Integrative and Comparative Biology 51(4): 608-622. dx.doi.org/10.1093/icb/icr102
In: Integrative and Comparative Biology. Oxford University Press: McLean, VA. ISSN 1540-7063, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Hardy, S.M.
  • Lindgren, M.
  • Konakanchi, H.
  • Huettmann, F.

Abstract
    Populations of the snow crab (Chionoecetes opilio) are widely distributed on high-latitude continental shelves of the North Pacific and North Atlantic, and represent a valuable resource in both the United States and Canada. In US waters, snow crabs are found throughout the Arctic and sub-Arctic seas surrounding Alaska, north of the Aleutian Islands, yet commercial harvest currently focuses on the more southerly population in the Bering Sea. Population dynamics are well-monitored in exploited areas, but few data exist for populations further north where climate trends in the Arctic appear to be affecting species' distributions and community structure on multiple trophic levels. Moreover, increased shipping traffic, as well as fisheries and petroleum resource development, may add additional pressures in northern portions of the range as seasonal ice cover continues to decline. In the face of these pressures, we examined the ecological niche and population distribution of snow crabs in Alaskan waters using a GIS-based spatial modeling approach. We present the first quantitative open-access model predictions of snow-crab distribution, abundance, and biomass in the Chukchi and Beaufort Seas. Multi-variate analysis of environmental drivers of species' distribution and community structure commonly rely on multiple linear regression methods. The spatial modeling approach employed here improves upon linear regression methods in allowing for exploration of nonlinear relationships and interactions between variables. Three machine-learning algorithms were used to evaluate relationships between snow-crab distribution and environmental parameters, including TreeNet, Random Forests, and MARS. An ensemble model was then generated by combining output from these three models to generate consensus predictions for presence-absence, abundance, and biomass of snow crabs. Each algorithm identified a suite of variables most important in predicting snow-crab distribution, including nutrient and chlorophyll-a concentrations in overlying waters, temperature, salinity, and annual sea-ice cover; this information may be used to develop and test hypotheses regarding the ecology of this species. This is the first such quantitative model for snow crabs, and all GIS-data layers compiled for this project are freely available from the authors, upon request, for public use and improvement.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors