IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Integrating mechanistic organism-environment interactions into the basic theory of community and evolutionary ecology
Baskett, M.L. (2012). Integrating mechanistic organism-environment interactions into the basic theory of community and evolutionary ecology. J. Exp. Biol. 215: 948-961. hdl.handle.net/10.1242/jeb.059022
In: Journal of Experimental Biology. Cambridge University Press: London. ISSN 0022-0949, more
Peer reviewed article  

Available in  Author 

Author  Top 
  • Baskett, M.L.

Abstract
    This paper presents an overview of how mechanistic knowledge of organism–environment interactions, including biomechanical interactions of heat, mass and momentum transfer, can be integrated into basic theoretical population biology through mechanistic functional responses that quantitatively describe how organisms respond to their physical environment. Integrating such functional responses into simple community and microevolutionary models allows scaling up of the organism-level understanding from biomechanics both ecologically and temporally. For community models, Holling-type functional responses for predator–prey interactions provide a classic example of the functional response affecting qualitative model dynamics, and recent efforts are expanding analogous models to incorporate environmental influences such as temperature. For evolutionary models, mechanistic functional responses dependent on the environment can serve as fitness functions in both quantitative genetic and game theoretic frameworks, especially those concerning function-valued traits. I present a novel comparison of a mechanistic fitness function based on thermal performance curves to a commonly used generic fitness function, which quantitatively differ in their predictions for response to environmental change. A variety of examples illustrate how mechanistic functional responses enhance model connections to biologically relevant traits and processes as well as environmental conditions and therefore have the potential to link theoretical and empirical studies. Sensitivity analysis of such models can provide biologically relevant insight into which parameters and processes are important to community and evolutionary responses to environmental change such as climate change, which can inform conservation management aimed at protecting response capacity. Overall, the distillation of detailed knowledge or organism–environment interactions into mechanistic functional responses in simple population biology models provides a framework for integrating biomechanics and ecology that allows both tractability and generality.

All data in IMIS is subject to the VLIZ privacy policy Top | Author