IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Variability in nursery function of tropical seagrass beds during fish ontogeny: timing of ontogenetic habitat shift
Nakamura, Y.; Hirota, K.; Shibuno, T.; Watanabe, Y. (2012). Variability in nursery function of tropical seagrass beds during fish ontogeny: timing of ontogenetic habitat shift. Mar. Biol. (Berl.) 159(6): 1305-1315. hdl.handle.net/10.1007/s00227-012-1911-z
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Nakamura, Y.
  • Hirota, K.
  • Shibuno, T.
  • Watanabe, Y.

Abstract
    Seagrass beds are often considered to be important nurseries for coral reef fish, yet the effectiveness of these nursery functions (refuge and food availability) at different juvenile stages is poorly understood. To understand how the demands of juvenile fish on seagrass nursery functions determines the timing of ontogenetic habitat shifts from seagrass beds to coral reefs, we conducted visual transect survey and field tethering and caging experiments on three different sizes of the coral reef fish Pacific yellowtail emperor (Lethrinus atkinsoni) during its juvenile tenure in seagrass beds at Ishigaki Island, southern Japan. The study showed that although the number of individual L. atkinsoni juveniles decreased by >90 % during their stay in the seagrass nursery, the shelter and/or food availability functions of the nursery, at least for a juvenile size of approximately 5 cm total length (TL), provided the best survival and growth option. The timing of ontogenetic migration to coral reefs of larger fish (>8 cm TL) was attributed to foraging efficiency for larger food items in different habitats. Overall, the function of the seagrass bed nursery changed with juvenile body size, with marginally higher survival and significantly greater growth rates during early juvenile stages in seagrass beds compared to coral reefs. This would contribute to the enhancement in the number of individuals eventually recruited to adult populations.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors