IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism
Hüning, A.K.; Melzner, F.; Thomsen, J.; Gutowska, M.A.; Krämer, L.; Frickenhaus, S.; Rosenstiel, P.; Pörtner, H.O.; Philipp, E.E.R.; Lucassen, M. (2013). Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar. Biol. (Berl.) 160(8): 1845-1861. hdl.handle.net/10.1007/s00227-012-1930-9
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Hüning, A.K.
  • Melzner, F.
  • Thomsen, J.
  • Gutowska, M.A.
  • Krämer, L.
  • Frickenhaus, S.
  • Rosenstiel, P.
  • Pörtner, H.O.
  • Philipp, E.E.R.
  • Lucassen, M.

Abstract
    Marine organisms have to cope with increasing CO2 partial pressures and decreasing pH in the oceans. We elucidated the impacts of an 8-week acclimation period to four seawater pCO2 treatments (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm) on mantle gene expression patterns in the blue mussel Mytilus edulis from the Baltic Sea. Based on the M. edulis mantle tissue transcriptome, the expression of several genes involved in metabolism, calcification and stress responses was assessed in the outer (marginal and pallial zone) and the inner mantle tissues (central zone) using quantitative real-time PCR. The expression of genes involved in energy and protein metabolism (F-ATPase, hexokinase and elongation factor alpha) was strongly affected by acclimation to moderately elevated CO2 partial pressures. Expression of a chitinase, potentially important for the calcification process, was strongly depressed (maximum ninefold), correlating with a linear decrease in shell growth observed in the experimental animals. Interestingly, shell matrix protein candidate genes were less affected by CO2 in both tissues. A compensatory process toward enhanced shell protection is indicated by a massive increase in the expression of tyrosinase, a gene involved in periostracum formation (maximum 220-fold). Using correlation matrices and a force-directed layout network graph, we were able to uncover possible underlying regulatory networks and the connections between different pathways, thereby providing a molecular basis of observed changes in animal physiology in response to ocean acidification.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors