IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Variation in abundances of intertidal populations: consequences of extremities of environment
Underwood, A.J.; Chapman, M.G. (2000). Variation in abundances of intertidal populations: consequences of extremities of environment. Hydrobiologia 426: 25-36
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158, more
Peer reviewed article  

Also published as
  • Underwood, A.J.; Chapman, M.G. (2000). Variation in abundances of intertidal populations: consequences of extremities of environment, in: Liebezeit, G. et al. (Ed.) Life at Interfaces and Under Extreme Conditions: Proceedings of the 33rd European Marine Biology Symposium, Wilhelmshaven, Germany, 7-11 September 1998. Hydrobiologia, 426(1-3): pp. 25-36, more

Available in  Authors 
Document type: Conference paper

Keywords
    Barnacles; Barnacles; Extreme values; Intertidal environment; Population number; Rocky shores; Spatial variations; Temporal variations; Marine

Authors  Top 
  • Underwood, A.J.
  • Chapman, M.G.

Abstract
    Spatial and temporal variability in patterns and processes are poorly understood for most assemblages, including intertidal assemblages on rocky shores. Such habitats represent gradients of increasing physical harshness towards the top of the shore. Influences of environmental harshness on numbers and recruitment of animals lead to the hypotheses that there should be greater small-scale spatial variance in more extreme parts of the environment (higher on the shore) and greater short-term temporal variance in less extreme (lower) parts of the shore. These predictions were tested using two barnacles (Tesseropora rosea and Chamaesipho tasmanica) and two limpets (Patelloida latistrigata and Notoacmea petterdi) in up to five locations on wave-exposed rocky shores in New South Wales (Australia). Only T. rosea showed different spatial variation at higher and lower levels - but greater at lower than higher levels, contradicting the hypothesis. T. rosea and P. latistrigata had greater temporal variation at lower levels, supporting the hypothesis. C. tasmanica, however, showed the opposite pattern, contradicting the hypothesis. Despite close associations between T. rosea and P. latistrigata, patterns of relationship of spatial variances were inconsistent. The study demonstrates the need for tests in numerous sites and that ecological patterns can differ markedly even for closely related species. It also demonstrates that much more widespread sampling and experimentation are needed to retain predictive and explanatory understanding of environmental gradients.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors