IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

The physiological response of Northern Krill (Meganyctiphanes norvegica) to temperature gradients in the Kattegat
Saborowski, R.; Salomon, M.; Buchholz, F. (2000). The physiological response of Northern Krill (Meganyctiphanes norvegica) to temperature gradients in the Kattegat. Hydrobiologia 426: 157-160
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158, more
Peer reviewed article  

Also published as
  • Saborowski, R.; Salomon, M.; Buchholz, F. (2000). The physiological response of Northern Krill (Meganyctiphanes norvegica) to temperature gradients in the Kattegat, in: Liebezeit, G. et al. (Ed.) Life at Interfaces and Under Extreme Conditions: Proceedings of the 33rd European Marine Biology Symposium, Wilhelmshaven, Germany, 7-11 September 1998. Hydrobiologia, 426(1-3): pp. 157-160, more

Available in Authors 
Document type: Conference paper

Keywords
    Temperature gradients; Vertical migrations; Meganyctiphanes norvegica (M. Sars, 1857) [WoRMS]; ANE, Kattegat [Marine Regions]; Marine

Authors  Top 
  • Saborowski, R.
  • Salomon, M.
  • Buchholz, F., more

Abstract
    The Alkor-Deep (140 m), which forms part of a depression system in the northern Kattegat channel east of the island of Laeso (Denmark), is the location of a self sustaining population of Northern krill, Meganyctiphanes norvegica (Euphausiacea). This population is exposed to one of the most pronounced thermal gradients within the distributional range of this pelagic crustacean. During summer, the temperature of the water column ranges between 4 and 6 in the deep to 16 °C near the surface which results in the krill being exposed to temperature differences of 8-10 °C during diel vertical migration. Oxygen consumption rates were used to investigate the physiological adaptation of the animal to such gradients in temperature. The rates were found to increase exponentially from 31 µmol O2 h-1 g(dw)-1 at 4 °C to 72 µmol O2 h-1 g(dw)-1 at 16 °C, giving a Q10value of 2.0, and indicating that physiological adaptation to varying thermal conditions does not take place. Behavioural adaptations are discussed which may help the krill to cope with large temperature gradients in their environment.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors