IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Physiological tolerances across latitudes: thermal sensitivity of larval marine snails (Nucella spp.)
Zippay, M.L.; Hofmann, G.E. (2010). Physiological tolerances across latitudes: thermal sensitivity of larval marine snails (Nucella spp.). Mar. Biol. (Berl.) 157(4): 707-714.
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Zippay, M.L.
  • Hofmann, G.E.

    A critical step in understanding how temperature will affect biodiversity in coastal ecosystems is to gain insight into how the tolerances, and ultimately survival, of early life history stages will influence the distribution and abundance of adults. We assessed the thermal tolerance of encapsulated veliger-stage larvae of a common dogwhelk, Nucella ostrina, that occur in the rocky intertidal zone on the west coast of North America. Results showed that veligers collected from northern latitudes in Washington State were less tolerant of heat stress than those from central sites in California. For all sites, we found there to be a subtle difference between the temperatures at which veligers first began to die compared to when veligers reached 100% mortality. On a biogeographic scale, the LT50 temperatures, a measure of larval sensitivity, for N. ostrina veligers displayed a strong latitudinal trend. These findings provide a conservative measurement of the upper thermal limits of encapsulated veligers while illustrating how these early life history stages could be physiologically compromised under future climate warming scenarios.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors