IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Modelling the fate of marine debris along a complex shoreline: lessons from the Great Barrier Reef
Critchell, K.; Grech, A.; Schlaefer, J.; Andutta, F.; Lambrechts, J.; Wolanski, E.; Hamann, M. (2015). Modelling the fate of marine debris along a complex shoreline: lessons from the Great Barrier Reef. Est., Coast. and Shelf Sci. 167(Part B): 414-426. dx.doi.org/10.1016/j.ecss.2015.10.018
In: Estuarine, Coastal and Shelf Science. Academic Press: London; New York. ISSN 0272-7714, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine
Author keywords
    Marine debris; Modelling; Beach orientation; Wind drift coefficient;Coastline; Great Barrier Reef; Marine

Authors  Top 
  • Critchell, K.
  • Grech, A.
  • Schlaefer, J.
  • Andutta, F.
  • Lambrechts, J., more
  • Wolanski, E.
  • Hamann, M.

Abstract
    The accumulation of floating anthropogenic debris in marine and coastal areas has environmental, economic, aesthetic, and human health impacts. Until now, modelling the transport of such debris has largely been restricted to the large-scales of open seas. We used oceanographic modelling to identify potential sites of debris accumulation along a rugged coastline with headlands, islands, rocky coasts and beaches. Our study site was the Great Barrier Reef World Heritage Area that has an emerging problem with debris accumulation. We found that the classical techniques of modelling the transport of floating debris models are only moderately successful due to a number of unknowns or assumptions, such as the value of the wind drift coefficient, the variability of the oceanic forcing and of the wind, the resuspension of some floating debris by waves, and the poorly known relative contribution of floating debris from urban rivers and commercial and recreational shipping. Nevertheless the model was successful in reproducing a number of observations such as the existence of hot spots of accumulation. The orientation of beaches to the prevailing wind direction affected the accumulation rate of debris. The wind drift coefficient and the exact timing of the release of the debris at sea affected little the movement of debris originating from rivers but it affected measurably that of debris originating from ships. It was thus possible to produce local hotspot maps for floating debris, especially those originating from rivers. Such modelling can be used to inform local management decisions, and it also identifies likely priority research areas to more reliably predict the trajectory and landing points of floating debris.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors