IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

OCEAN: An optimized HW/SW reliability mitigation approach for scratchpad memories in real-time SoCs
Sabry, M.; Atienza, D.; Catthoor, F. (2014). OCEAN: An optimized HW/SW reliability mitigation approach for scratchpad memories in real-time SoCs. ACM Transactions on Embedded Computing Systems 13(4s): 26 pp. dx.doi.org/10.1145/2584667
In: ACM Transactions on Embedded Computing Systems. ACM Press: New York. ISSN 1539-9087, more
Peer reviewed article  

Available in Authors 
    VLIZ: Open Repository 292201 [ OMA ]

Keyword
    Marine
Author keywords
    Design; Algorithms; Performance; Reliability; Error correction; hybridmitigation; embedded systems

Authors  Top 
  • Sabry, M.
  • Atienza, D.
  • Catthoor, F.

Abstract
    Recent process technology advances trigger reliability issues that degrade the Quality-of-Service (QoS) required by embedded Systems-on-Chip (SoCs). To maintain the required QoS with acceptable overheads, we propose OCEAN, a novel cross-layer error mitigation. OCEAN enforces on-chip SRAMs reliability with a fault-tolerant buffer. We utilize this buffer to protect a portion of the processed data used to restore from runtime error. We optimally select the buffer size to minimize the energy overhead, with timing and area constraints. OCEAN achieves full error mitigation with 10.1% average energy overhead compared to baseline operation that does not include any error correction capability, and 65% energy savings, compared to a cross-layer error mitigation mechanism.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors