IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum)
Huysman, M.J.J.; Fortunato, A.; Matthijs, M.; Costa, B.; Vanderhaeghen, R.; Van den Daele, H.; Sachse, M.; Inzé, D.; Bowler, C.; Kroth, P.; Wilhelm, C.; Falciatore, A.; Vyverman, W.; De Veylder, L. (2013). AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). Plant Cell 25(1): 215-228. dx.doi.org/10.1105/tpc.112.106377
In: The Plant Cell. American Society of Plant Biologists: Rockville, MD. ISSN 1040-4651, more
Peer reviewed article  

Available in Authors 
    VLIZ: Open Repository 300083 [ OMA ]

Keyword
    Marine

Authors  Top 
  • Huysman, M.J.J., more
  • Fortunato, A.
  • Matthijs, M., more
  • Costa, B.
  • Vanderhaeghen, R.
  • Van den Daele, H.
  • Sachse, M.
  • Inzé, D., more
  • Bowler, C.
  • Kroth, P.
  • Wilhelm, C.
  • Falciatore, A.
  • Vyverman, W., more
  • De Veylder, L., more

Abstract
    Cell division in photosynthetic organisms is tightly regulated by light. Although the light dependency of the onset of the cell cycle has been well characterized in various phototrophs, little is known about the cellular signaling cascades connecting light perception to cell cycle activation and progression. Here, we demonstrate that diatom-specific cyclin 2 (dsCYC2) in Phaeodactylum tricornutum displays a transcriptional peak within 15 min after light exposure, long before the onset of cell division. The product of dsCYC2 binds to the cyclin-dependent kinase CDKA1 and can complement G1 cyclin-deficient yeast. Consistent with the role of dsCYC2 in controlling a G1-to-S light-dependent cell cycle checkpoint, dsCYC2 silencing decreases the rate of cell division in diatoms exposed to light-dark cycles but not to constant light. Transcriptional induction of dsCYC2 is triggered by blue light in a fluence rate-dependent manner. Consistent with this, dsCYC2 is a transcriptional target of the blue light sensor AUREOCHROME1a, which functions synergistically with the basic leucine zipper (bZIP) transcription factor bZIP10 to induce dsCYC2 transcription. The functional characterization of a cyclin whose transcription is controlled by light and whose activity connects light signaling to cell cycle progression contributes significantly to our understanding of the molecular mechanisms underlying light-dependent cell cycle onset in diatoms.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors