IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Seasonal stresses shift optimal intertidal algal habitats
Dethier, M.N.; Williams, S.L. (2009). Seasonal stresses shift optimal intertidal algal habitats. Mar. Biol. (Berl.) 156(4): 555-567.
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Dethier, M.N.
  • Williams, S.L.

    We studied how the growth, reproduction, and survival of a common intertidal rockweed (Fucus distichus) varied across its tidal elevation at 14 sites around San Juan Island, Washington, USA in spring–summer and fall-winter seasons. We also measured a suite of environmental factors including temperature, light, emersion time, slope, fetch, and herbivory. To interpret the response of Fucus we included measurements of phlorotannins and carbon storage compounds (mannitol, laminarin). Growth and reproduction exhibited parallel patterns across tidal zones and sites. Tidal zone was a significant source of variation for many Fucus response variables, whereas variation between sites was high but not generally a significant factor explaining Fucus growth and physiology. Unexpectedly, the tidal zone in which Fucus achieved its highest growth and reproduction switched between seasons. High zone thalli grew and reproduced better than Mid zone thalli in fall but not in spring. This result can be explained by different combinations of factors influencing Fucus in each season. In spring, longer emersion times due to daytime low tides resulted in lower growth rates higher on the shore, likely due to carbon limitation. In fall during nighttime low tides, emersion and carbon limitation stresses were minimal. Overall, fall growth was lower than spring growth, but low fall light was not responsible. Instead, warmer average fall temperatures in the High zone apparently favored growth and reproduction relative to the Mid zone. In contrast, Mid zone thalli were subjected to more intense herbivory and hydrodynamic stress associated with wave exposure and steep substrata during the fall. At least for some seaweeds, living in the presumably more stressful high zone can actually confer higher integrated performance.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors