IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Comparison of feeding habits of myctophid fishes and juvenile small epipelagic fishes in the western North Pacific
Takagi, K.; Yatsu, A.; Itoh, H.; Moku, M.; Nishida, H. (2009). Comparison of feeding habits of myctophid fishes and juvenile small epipelagic fishes in the western North Pacific. Mar. Biol. (Berl.) 156(4): 641-659.
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Takagi, K.
  • Yatsu, A.
  • Itoh, H.
  • Moku, M.
  • Nishida, H.

    To examine the potential trophic competition between myctophids and small epipelagic fishes in the nursery grounds in spring, we compared the stomach contents of dominant myctophids (Symbolophorus californiensis, Ceratoscopelus warmingii and Myctophum asperum; n = 179) and juvenile epipelagic fishes (Japanese sardine, Sardinops melanostictus, Japanese anchovy, Engraulis japonicus, chub mackerel, Scomber japonicus, and spotted mackerel, S. australasicus; n = 78) that were simultaneously collected at nighttime with a midwater trawl net around the Kuroshio-Oyashio transition zone in the western North Pacific. It was clear that the neritic copepod Paracalanus parvus s.l. was the most abundant species in NORPAC samples (0.335 mm mesh size) taken at the same stations. Diets of dominant myctophid fishes differed from those of the juvenile epipelagic fishes; Japanese sardine and anchovy mostly preyed upon P. parvus s.l. (23.6% of stomach contents in volume) and Corycaeus affinis (16.1%), respectively. Both chub and spotted mackerels mainly preyed upon the seasonal vertical migrant copepod, Neocalanus cristatus (15.9 and 14.7%, respectively). On the contrary, myctophid fishes probably do not specifically select the abundant neritic copepods. Namely, S. californiensis mostly preyed upon a diel vertical migrating copepod, Pleuromamma piseki (22.7 and 30.6% in stomach of juvenile and adult, respectively), while C. warmingii and M. asperum preyed on Doliolida (43.0% in stomach of juvenile C. warmingii), appendicularians (11.0% in stomach of juvenile M. asperum), and Ostracoda (6.3% in stomach of adult C. warmingii). Feeding habits of myctophid fishes seem adapted to their prey animals; low rate of digested material (less than 30% in volume) in stomachs of S. californiensis may be linked to the movement of P. piseki, hence S. californiensis can easily consume this copepod at night since they are more concentrated at night than daytime. High rate of digested material (over 40%) of M. asperum and adult C. warmingii suggest that they feed not only at night but also during the daytime in the midwater layer. Thus, myctophid fishes actually fed in the surface layer but less actively than the small epipelagic fishes. These results suggest that the potential for direct food competition between myctophids and small epipelagic fishes is low in the nursery ground, but there remains a possibility of indirect effects through their prey items, since the above gelatinous animals feed on common prey items as juveniles of Japanese sardine and anchovy.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors