IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Multiple paternity and extra-group fertilizations in a natural population of California grunion (Leuresthes tenuis), a beach-spawning marine fish
Byrne, R.J.; Avise, J.C. (2009). Multiple paternity and extra-group fertilizations in a natural population of California grunion (Leuresthes tenuis), a beach-spawning marine fish. Mar. Biol. (Berl.) 156(8): 1681-1690. hdl.handle.net/10.1007/s00227-009-1203-4
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Byrne, R.J.
  • Avise, J.C.

Abstract
    Although individuals in many fish species move to shallow waters to spawn, the California grunion (Leuresthes tenuis) is almost unique in its constitutive display of synchronous full-emergence beach spawning. During a spawning event, fish ride large waves onshore to spawn on beach land, where their eggs incubate terrestrially. Here, we employ molecular markers to ascertain how this unusual reproductive behavior impacts genetic parentage. We developed and utilized four highly polymorphic microsatellite markers to assess maternal and paternal contributions in a total of 682 progeny from 17 nests of a natural population of L. tenuis. Alleles deduced to be of paternal origin in progeny were used to determine the minimum number of sires per nest and to estimate the true number of sires per nest via Bayesian analysis. We document the following: (a) no instances of multiple maternity for progeny within a nest; (b) a high frequency of nests (88%) with multiple paternity; and (c) an appreciable fraction of nests (18%) in which the estimated number of genetic sires (as many as nine) proved to be greater than the observed number of male attendants, thus implicating occasional extra-group fertilization events. From these and other observations, we also conclude that spawning behavior in grunions may involve site choice but not explicit mate choice. In addition to providing the first analysis of molecular parentage in a beach-spawning fish, we compare our findings to those reported previously for a beach-spawning arthropod, and we discuss the forces that may be maintaining this peculiar reproductive behavior.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors