IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [258811]
Coordinated mechanics of feeding, swimming, and eye movements in Tautoga onitis, and implications for the evolution of trophic strategies in fishes
Rice, A.N. (2008). Coordinated mechanics of feeding, swimming, and eye movements in Tautoga onitis, and implications for the evolution of trophic strategies in fishes. Mar. Biol. (Berl.) 154(2): 255-267. http://dx.doi.org/10.1007/s00227-008-0918-y
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal

Author  Top 
  • Rice, A.N.

Abstract
    Fish feeding behavior results from successful coordination of the fins, jaws, and sensory systems, and the organization of this behavior may affect the fish’s foraging abilities and trophic ecology. Using quantitative kinematic methods, movements of the jaws, fins and eyes of Tautoga onitis (Teleostei: Labridae) were analyzed during feeding events. Tautog feeding events consisted of three phases: approach, strike, and recovery, each defined by a combination of kinematic events. The approach was characterized by changes in fin movements and in body position, with the eyes directed forward at the food item. The strike began with the onset of jaw opening and protrusion, then cranial elevation, with the eyes no longer looking at the food item. The end of the strike and the beginning of the recovery involved a braking maneuver with the pectoral fins; the fish turns and swims away from the original food location item after prey capture. The coordination performance variables of tautog were quantitatively compared to published data from closely related cheiline wrasses and parrotfishes, which represent different feeding ecologies within a monophyletic assemblage. Fishes feeding on molluscs and benthic invertebrates (Cheilinus fasciatus and Tautoga onitis) represented an intermediate coordination condition, with herbivores (the parrotfishes, Scarus quoyi and Sparisoma radians) at one extreme, and fishes feeding on elusive prey (Epibulus insidiator and Oxycheilinus digrammus) at the other extreme. The analysis suggests that the biomechanical demands of coordination for feeding on benthic invertebrates may represent a generalized, and perhaps ancestral behavior in the wrasses, whereas more specialized trophic niches have evolved divergent, more specialized demands. Examining the movement and coordination of the jaws, fins, and eyes during fish feeding provides a detailed mechanistic basis for behavior, and comparison of coordination patterns during feeding among different taxa can measure how these trophic strategies differ. Understanding the evolution of feeding ecologies in these demersal fishes may have implications for understanding their role within their shallow water reef community.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author