IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Feeding patterns in seagrass beds of three-spined stickleback Gasterosteus aculeatus juveniles at different growth stages
Demchuk, A.; Ivanov, M.; Ivanova, T.; Polyakova, N.; Mas-Marti, E.; Lajus, D. (2015). Feeding patterns in seagrass beds of three-spined stickleback Gasterosteus aculeatus juveniles at different growth stages, in: Sukhotin, A. et al. (Ed.) Proceedings of the 49th European Marine Biology Symposium September 8-12, 2014, St. Petersburg, Russia. Journal of the Marine Biological Association of the United Kingdom, 95(8): pp. 1635-1643. hdl.handle.net/10.1017/S0025315415000569
In: Sukhotin, A. et al. (Ed.) (2015). Proceedings of the 49th European Marine Biology Symposium September 8-12, 2014, St. Petersburg, Russia. Journal of the Marine Biological Association of the United Kingdom, 95(8). Cambridge University Press: Cambridge. 1517-1721 pp., more
In: Journal of the Marine Biological Association of the United Kingdom. Cambridge University Press/Marine Biological Association of the United Kingdom: Cambridge. ISSN 0025-3154, more
Peer reviewed article  

Available in Authors 
Document type: Conference paper

Keyword
    Marine

Authors  Top 
  • Demchuk, A.
  • Ivanov, M.
  • Ivanova, T.
  • Polyakova, N.
  • Mas-Marti, E.
  • Lajus, D.

Abstract
    Today, three-spined stickleback Gasterosteus aculeatus are the most abundant fish in the White Sea and are close to their historical maximum. Based on observations from 2011–2013, this study reports quantitative and qualitative characteristics of juvenile stickleback diet during periods of active feeding in coastal Zostera seagrass beds. The following planktonic taxa dominated stomach contents: copepods Temora longicornis and Microsetella norvegica, ciliophora Helicostomella subulata. Benthic organisms such as Oligochaetae and Orthocladiinae also played an important role, whereas the literature suggests they were once rare in marine stickleback diets. Consumption patterns depended on fish size, with the most pronounced diet shift taking place as juveniles reached a length of 15 mm, in late August. In larger juveniles the highest correlation between the abundance of food organisms in stomachs and in the sea was observed for Orthocladiinae, suggesting that they are the preferred food. Overall, changes in diet followed changes in the abundance of available food organisms, but food selectivity analysis of planktonic organisms showed that M. norvegica were actively selected by juveniles.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors