IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Influence of bacteria and diatoms in biofilms on metamorphosis of the marine slipper limpet Crepidula onyx
Chiu, J.M.-Y.; Thiyagarajan, V.; Pechenik, J.A.; Hung, O.-S.; Qian, P.-Y. (2007). Influence of bacteria and diatoms in biofilms on metamorphosis of the marine slipper limpet Crepidula onyx. Mar. Biol. (Berl.) 151(4): 1417-1431. http://hdl.handle.net/10.1007/s00227-006-0580-1
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Chiu, J.M.-Y.
  • Thiyagarajan, V.
  • Pechenik, J.A.
  • Hung, O.-S.
  • Qian, P.-Y.

Abstract
    Larvae of the slipper limpet Crepidula onyx metamorphose in response to marine biofilms. In this study, we investigated how the percentage of larval metamorphosis in this species was affected by biofilms that differed in certain attributes. To manipulate bacterial and diatom cell densities and community composition, we developed biofilms in the laboratory (1) at different temperatures (16, 23 and 30°C) and salinities (20, 27 and 34‰), (2) with or without addition of antibiotics, and (3) in the light or in the dark. We also allowed biofilms to develop at three field sites with different prevailing environmental conditions so as to generate biofilms with different, but natural, attributes. Bacterial and diatom community composition in biofilms were determined using a DNA fingerprinting technique and microscopic examination, respectively. The effects of biofilms on metamorphosis were investigated in laboratory assays. The percentage of larval metamorphosis correlated with bacterial and diatom cell densities in only one of the three experiments conducted, but was substantially affected by differences in bacterial and diatom community composition in all three experiments. It also appears that metamorphosis of C. onyx depends on the simultaneous presence of both bacterial and diatom communities in biofilms.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors