IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Ecoforecasting in real time for commercial fisheries: the Atlantic white shrimp as a case study
Garcia, S.P.; DeLancey, L.B.; Almeida, J.S.; Chapman, R.W. (2007). Ecoforecasting in real time for commercial fisheries: the Atlantic white shrimp as a case study. Mar. Biol. (Berl.) 152(1): 15-24. http://dx.doi.org/10.1007/s00227-007-0622-3
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Garcia, S.P.
  • DeLancey, L.B.
  • Almeida, J.S.
  • Chapman, R.W.

Abstract
    Predictive modeling of natural resources has long relied on mechanistic descriptions incorporating various population attributes and to a lesser extent environmental conditions. A radical departure from this tradition is proposed, advocating the data-driven analysis and forecasting of population cycles from historical records, and using the Atlantic white shrimp, Litopenaeus setiferus, as a case study. The time series data were collected in the Charleston Harbor (32°47'00?N, 79°56'00?W), South Carolina, USA, and from the database of the National Marine Fisheries Service (http://?www.?st.?nmfs.?gov/?st1/?commercial/?index.?html), for the period between January 1986 and December 2004. Correlations between shrimp population cycles and environmental hydrological parameters were established by phase space reconstruction, a technique central to most nonlinear time series analysis methods. Predictive models of future shrimp population levels were built using feed-forward artificial neural networks, a well-known machine learning technique. From several attempted strategies, predicting the state commercial harvest from the sampling of populations in the Charleston Harbor conducted by the South Carolina Department of Natural Resources proved to be optimal, with an accuracy of 92% for 1-month and 79% for 3-month ahead predictions, as measured by the nonparametric and nonlinear Spearman’s correlation coefficient. In addition, the shrimp population levels seem to be more sensitively to changes in surface water temperature than salinity, but the latter is also an important consideration. These models also suggest that catch-per-unit-effort data are important indicators of commercial harvest and, thus, provide an important linkage between monitoring programs and commercial returns, enabling accurate predictions of natural resources to be made in near real time and extended beyond the critical time frames within which resource managers operate.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors