IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [259718]
Differences in somatic and gonadic growth of sea urchins (Stronglyocentrotus droebachiensis) fed kelp (Laminaria longicruris) or the invasive alga Codium fragile ssp. tomentosoides are related to energy acquisition
Lyons, D.A.; Scheibling, R.E. (2007). Differences in somatic and gonadic growth of sea urchins (Stronglyocentrotus droebachiensis) fed kelp (Laminaria longicruris) or the invasive alga Codium fragile ssp. tomentosoides are related to energy acquisition. Mar. Biol. (Berl.) 152(2): 285-295. http://dx.doi.org/10.1007/s00227-007-0682-4
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Lyons, D.A.
  • Scheibling, R.E.

Abstract
    The rocky subtidal community off the Atlantic coast of Nova Scotia has historically undergone a cyclical transition between Laminaria-dominated kelp beds and sea urchin-dominated barrens. Since the introduction of the invasive alga Codium fragile ssp. tomentosoides, a third community state has emerged: Codium-dominated algal beds. We conducted a 42-week feeding experiment in the laboratory, which mimicked the quantity and quality of food available to urchins (Strongylocentrotus droebachiensis) in each of these community states. Feeding rate, growth, reproduction, and survival of urchins fed either Laminaria longicruris or C. fragile ad libidum, or L. longicruris 2 days per month, were measured. Although the ad libidum feeding rate on C. fragile was higher than that on kelp, energy intake was lower. Urchins in the ad libidum kelp treatment were larger and had larger gonads than those in the C. fragile treatment. Urchins fed kelp infrequently exhibited little somatic and gonadic growth over the course of the experiment. Regression analysis revealed that urchin performance on these diets was strongly related to energy intake. Diet treatment had no effect on survival or gonad maturation. Although urchins can consume substantial amounts of C. fragile, it appears that they cannot, or do not, feed quickly enough to compensate for its lower nutritional value. Our results suggest that, although urchins feeding on C. fragile are capable of surviving, growing, and reproducing, the replacement of kelp by C. fragile in some areas might negatively affect urchin populations as they continue to repopulate the shallow subtidal zone.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors