IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

POM in macro-/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge
Limén, H.; Levesque, C.; Juniper, S.K. (2007). POM in macro-/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge. Mar. Biol. (Berl.) 153(2): 129-139. hdl.handle.net/10.1007/s00227-007-0790-1
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Limén, H.
  • Levesque, C.
  • Juniper, S.K.

Abstract
    Deep-sea hydrothermal vent ecosystems host both symbiotic and non-symbiotic invertebrates. The non-symbiotic vent fauna is generally assumed to rely on free-living chemoautotrophic bacteria as their main food source but other sources such as detritus have recently been suggested to be a part of the invertebrate diets. Little is known about how food availability influences the distribution of vent organisms on a small scale. In addition, the feeding ecology and role of small, often numerically dominant invertebrates, the meiofauna is poorly understood at vents. In this study, we used stable carbon and nitrogen isotopic analysis to investigate the role of particulate detritus in the diets of macro- and meiobenthic invertebrates within three vent assemblages at Axial Volcano, Juan de Fuca Ridge, and Northeast Pacific. Particulate organic matter of a detrital origin became more important in the diet of invertebrates in assemblages typically associated with low-hydrothermal flow intensities. Meiobenthic species occupied several different feeding guilds and trophic levels in the assemblages investigated. We conclude that small-scale spatial variability in food sources is an important feature of vent food webs and that spatial patterns observed here and elsewhere are shaped by variations in hydrothermal discharge.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors