IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Characterizing the resident, fermentative microbial consortium in the hindgut of the temperate-zone herbivorous fish, Hermosilla azurea (Teleostei: Kyphosidae)
Fidopiastis, P.M.; Bezdek, D.J.; Horn, M.H.; Kandel, J.S. (2006). Characterizing the resident, fermentative microbial consortium in the hindgut of the temperate-zone herbivorous fish, Hermosilla azurea (Teleostei: Kyphosidae). Mar. Biol. (Berl.) 148(3): 631-642. http://hdl.handle.net/10.1007/s00227-005-0106-2
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Fidopiastis, P.M.
  • Bezdek, D.J.
  • Horn, M.H.
  • Kandel, J.S.

Abstract
    The zebraperch, Hermosilla azurea Jenkins and Evermann, a warm-temperate marine fish species with a strictly macroalgal diet, has a relatively long digestive tract with an enlarged hindgut and an associated blind caecum (HC). In zebraperch sampled off Santa Catalina Island, California (33°19'42''N; 118°18'37''W) in years 1995 through 2001, direct cell counts, gut epithelium assessment of bacterial attachment, and short-chain fatty acid (SCFA) analyses verified that the zebraperch HC possesses a dense and morphologically diverse, fermentative microbiota. Bacterial cell counts and morphological diversity were significantly higher in HC contents compared to anterior gut regions, suggesting that microbial populations were growing along the digestive tract. Similarly, electron micrographs of the HC epithelium revealed attached microbes, further supporting the possibility that these organisms constitute resident microbiota. Five different SCFAs were detected in all three regions of the digestive tract, but levels were up to three times greater in HC contents. Acetate was consistently the prevailing SCFA in all gut regions. Sequence analysis of bacterial 16S rDNA was used to identify predominant bacterial groups in HC contents. Of the seven main bacterial types identified, Enterovibrio spp. were the dominant bacteria in HC contents followed by species of Bacteroides,Faecalibacterium, and Desulfovibrio. Taken together, our findings show that the zebraperch HC harbors a consortium of microbes that appears to assist in the breakdown of algal polysaccharides in the herbivorous diet of the fish.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors