IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Diving deep in a foraging hotspot: acoustic insights into bottlenose dolphin dive depths and feeding behaviour
Hastie, G.D.; Wilson, B.; Thompson, P.M. (2006). Diving deep in a foraging hotspot: acoustic insights into bottlenose dolphin dive depths and feeding behaviour. Mar. Biol. (Berl.) 148(5): 1181-1188. http://dx.doi.org/10.1007/s00227-005-0143-x
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Hastie, G.D.
  • Wilson, B.
  • Thompson, P.M.

Abstract
    To exploit resources in their environment, odontocete cetaceans have evolved sophisticated diving abilities to allow effective foraging. However, data on the diving behaviour and underwater foraging behaviour remains limited. This study made use of echolocation clicks and other calls to study the diving behaviour of bottlenose dolphins. Dolphins used the full water column and consistently dived to depths of around 50 m, close to the seabed. However, the majority of their time appeared to be spent within the surface layers of the water column. In addition, by localising calls that have been associated with prey capture events (Janik, Proc R Soc Lond Ser B 267:923–927, 2000a), it appeared that certain forms of feeding behaviour occurred primarily at depths of between 20 and 30 m. Furthermore, data on the depth of clicks made before and after these feeding calls suggested that during the minute before the calls, dolphins were consistently diving from the surface to depths close to the seabed, and were subsequently returning to the surface after the calls. This passive acoustic technique proved an accurate method for studying the depth distribution of dolphin vocalisations. By exploiting the natural sounds made by these wild odontocetes, this investigation provided a previously unavailable perspective on the the 3D nature of bottlenose dolphins foraging behaviour. It confirmed that while the dolphins spent the majority of time close to the surface, the full water column was exploited during foraging events.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors