IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata
Mackie, J.A.; Keough, M.J.; Christidis, L. (2006). Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata. Mar. Biol. (Berl.) 149: 285-295. hdl.handle.net/10.1007/s00227-005-0196-x
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Mackie, J.A.
  • Keough, M.J.
  • Christidis, L.

Abstract
    Nucleotide variation in cytochrome c oxidase subunit I (COI) was used to examine population structure in three invasive bryozoans: Bugula neritina (Linnaeus, 1758), Watersipora subtorquata (d’Orbigny, 1852), and W. arcuata (Banta, 1969). These species are found on ship hulls and have a short (=2 days) larval phase. Samples were collected from 1998–2001 at multiple sites in Australia, and in Hong Kong, New Zealand, Hawaii, California, Curaçao, and England. B. neritina is known to include three cryptic species, including species Type S (Davidson and Haygood in Biol Bull 196:273–280, 1999) which occurs on the east and west coasts of the USA. One haplotype recorded previously in the USA, S1, was found to be widespread, occurring throughout Australia and in Hong Kong, Curaçao, Hawaii, and England. W. subtorquata, a Caribbean–Atlantic species which has invaded southern Australia, New Zealand, and California, had low nucleotide diversity in these areas (p=0.0016±0.0014), consisting of three haplotypes connected by one or two nucleotide mutations. W. arcuata, an Eastern-Pacific native, had comparatively high diversity (p=0.0221±0.0115) in introduced populations from Australia and Hawaii. In each species, identical haplotypes were identified on separate coastlines providing evidence of widespread, rather than genetically independent, introductions. The major contrast in nucleotide diversity suggests that different propagule-source models explain introductions.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors