IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Effects of simulated sublethal predation on the growth and regeneration rates of a spionid polychaete in laboratory flumes
Hentschel, B.T.; Harper, N.S. (2006). Effects of simulated sublethal predation on the growth and regeneration rates of a spionid polychaete in laboratory flumes. Mar. Biol. (Berl.) 149(5): 1175-1183. http://dx.doi.org/10.1007/s00227-006-0274-8
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Hentschel, B.T.
  • Harper, N.S.

Abstract
    Most spionid polychaetes switch from deposit feeding to suspension feeding as current speed and the flux of suspended food increase. Growth rates of juvenile Polydora cornuta are strongly affected by flow and can be as rapid as 60% day-1 in moderate currents. Feeding palps that extend above the sediment–water interface during suspension feeding are especially vulnerable to sublethal predation, but individuals with damaged posteriors are also common. We performed a series of laboratory flume experiments to test the effects of sublethal tissue damage on the growth and regeneration rates of P. cornuta juveniles. Replicated experiments were conducted at three flow speeds in counter-rotating annular flumes containing field-collected sediment and a nonliving algal slurry as deposited and suspended food. In the first set of experiments, we removed 2, 1, or 0 of worms’ two feeding palps and measured the relative growth rates of worm bodies and palps after 3 days in the flumes. Worms that lost both palps grew significantly slower than the other two groups, but the growth rate of worms that had one undamaged palp was not significantly different from worms that had two undamaged palps. Faster flow speeds significantly increased rates of body growth, and there was a significant interaction between flow and the effect of palp loss. During the 3-day experiments, damaged palps fully regenerated and often grew larger than they were prior to being removed. Damaged palps also grew significantly faster than undamaged palps. The second set of experiments tested the effects of removing a worm’s posterior region (~18% of body volume). The growth rates of these damaged and undamaged worms did not differ significantly. By the end of a 3-day flume experiment, damaged worms had grown 6× larger than they were prior to the posterior damage. The rapid regeneration of damaged palps and posterior tissue in moderate flows that allow suspension feeding suggests that sublethal predation on spionids might be more frequent than previously estimated and will have little impact on the growth of juvenile recruits.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors