IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Wave action and competitive interaction between the invasive mussel Mytilus galloprovincialis and the indigenous Perna perna in South Africa
Rius, M.; McQuaid, C.D. (2006). Wave action and competitive interaction between the invasive mussel Mytilus galloprovincialis and the indigenous Perna perna in South Africa. Mar. Biol. (Berl.) 150(1): 69-78.
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Rius, M.
  • McQuaid, C.D.

    On the south coast of South Africa, the invasive alien mussel Mytilus galloprovincialis shows partial habitat segregation with the indigenous mussel Perna perna. P. perna predominates in the lower mussel zone and M. galloprovincialis in the upper zone, with mixed beds where the two overlap. We examined competitive interactions between these species by translocating mussels into small plots at high densities. Treatments involved different combinations of species and densities placed in each zone. Mortality was monitored regularly and at the end of each experiment, growth and condition index were measured. The experiment was attempted three times. The first two attempts were disrupted by wave action, especially winter storms, but provided information on species-specific effects of wave action. In experiment one, wave induced mortality decreased from a mean for both species of approximately 90% on the low shore to ca. 50% on the high shore, and was 15–30% lower for P. perna than M. galloprovincialis in each zone. In experiment two, M. galloprovincialis mortality was not affected by zone (Kruskal–Wallis test, P > 0.05), but was higher than P. perna mortality in the low zone (P < 0.05). P. perna survival was significantly (P < 0.05) lower on the high than mid and low zones, apparently due to the effects of greater emersion. Condition index showed a similar pattern, being lowest in the low zone for M. galloprovincialis and in the high zone for P. perna (3-way ANOVA, P < 0.05). Growth rates were fastest for both species in the low zone (Kruskal–Wallis, P < 0.05 in both cases). The third experiment was run for 12 months in the low zone only and provided evidence of intraspecific competition for P. perna and of interspecific competition. Condition was significantly greater for P. perna in all treatments (2-way ANOVA), as was growth (Kruskal–Wallis P < 0.05). Significant treatment effects indicated that P. perna had a negative effect on M. galloprovincialis survival (Kruskal–Wallis, P < 0.05). Again wave action was important; by the end of the experiment all mussels had been removed from plots stocked only with M. galloprovincialis. Thus P. perna improves survival of M. galloprovincialis on the low shore in the short term, by providing protection against wave action, but excludes it competitively in the longer term. The results show that partial habitat segregation is likely to be a permanent feature on the south coast, with M. galloprovincialis unable to dominate the low shore due to the effects of waves and competitive exclusion by P. perna. This study is the first attempt to examine the mechanisms of interaction between invasive and indigenous marine mussel species and provides evidence of the importance of environmental conditions in the mediation of this interaction.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors