IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula
Lee, K.-S.; Park, S.R.; Kim, J.-B. (2005). Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol. (Berl.) 147(5): 1091-1108. hdl.handle.net/10.1007/s00227-005-0011-8
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Lee, K.-S.
  • Park, S.R.
  • Kim, J.-B.

Abstract
    Production dynamics of eelgrass, Zostera marina was examined in two bay systems (Koje Bay and Kosung Bay) on the south coast of the Korean peninsula, where few seagrass studies have been conducted. Dramatically reduced eelgrass biomass and growth have been observed during summer period on the coast of Korea, and we hypothesized that the summer growth reduction is due to increased water temperature and/or reduced light and nutrient availabilities. Shoot density, biomass, morphological characteristics, leaf productivities, and tissue nutrient content of eelgrass were measured monthly from June 2001 to April 2003. Water column and sediment nutrient concentrations were also measured monthly, and water temperature and underwater irradiance were monitored continuously at seagrass canopy level. Eelgrass shoot density, biomass, and leaf productivities exhibited clear seasonal variations, which were strongly correlated with water temperature. Optimal water temperature for eelgrass growth in the present study sites was about 15–20°C during spring period, and eelgrass growths were inhibited at the water temperature above 20°C during summer. Daily maximum underwater photon flux density in the study sites was usually much higher than the light saturation point of Z. marina previously reported. Densities of each terminal, lateral, and reproductive shoot showed their unique seasonal peak. Seasonal trends of shoot densities suggest that new eelgrass shoots were created through formation of lateral shoots during spring and a part of the vegetative shoots was transformed into flowering shoots from March. Senescent reproductive shoots were detached around June, and contributed to reductions of shoot density and biomass during summer period. Ambient nutrient level appeared to provide an adequate reserve of nutrient for eelgrass growth throughout the experimental period. The relationships between eelgrass growth and water temperature suggested that rapid reductions of eelgrass biomass and growth during summer period on the south coast of the Korean peninsula were caused by high temperature inhibition effects on eelgrass growth during this season.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors