IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrasses Thalassia hemprichii and Halodule uninervis
Lan, C.-Y.; Kao, W.-Y.; Lin, H.-J.; Shao, K.-T. (2005). Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrasses Thalassia hemprichii and Halodule uninervis. Mar. Biol. (Berl.) 148(1): 25-34. hdl.handle.net/10.1007/s00227-005-0053-y
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Lan, C.-Y.
  • Kao, W.-Y.
  • Lin, H.-J.
  • Shao, K.-T.

Abstract
    In Taiwan, Thalassia hemprichii dominates the upper intertidal zone, whereas Halodule uninervis occupies the lower intertidal zone. We tested the hypothesis that T. hemprichii is better adapted to high irradiance and more resistant to air exposure than H. uninervis. The photosynthetic efficiency, damage, and extent of recovery were determined by measuring chlorophyll fluorescence using pulse amplitude modulated fluorometry. Both species growing in tidal pools, in response to high irradiance alone, revealed a small depression in maximal quantum yield of photosystem II (Fv/Fm) at noon. The second experiment compared the effect of air exposure alone and the combined effect of air exposure with high irradiance by interposing a shading screen on both species, growing in the intertidal zone over a diurnal cycle. Values of Fv/Fm of both the shaded and irradiated T. hemprichii remained high at low tide. However, H. uninervis exhibited a marked depression following air exposure and a synergistic depression under the combined effect. The experimental manipulations of exposure time demonstrated that the tolerance of T. hemprichii to the combined effect was longer and the recovery from air exposure following re-submersion was better than those of H. uninervis. Both species were more susceptible to the combined effect in the dry season than in the wet season. Our results suggest that air exposure is more important than high irradiance in constraining the distribution of H. uninervis in the upper intertidal zone. This was confirmed by transplantation experiments in which a rapid decline of H. uninervis was observed after transplantation into the upper intertidal zone. In the lower intertidal zone, measurements of the response of the photosynthetic electron transport rate to irradiance demonstrated that the transplanted T. hemprichii exhibited a sun-type response and H. uninervis a shade-type response.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors