IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Mangrove leaf transportation : Do mimic Avicennia and Rhizophora roots retain or donate leaves?
Gillis, L.G; Zimmer, M.; Bouma, T.J. (2016). Mangrove leaf transportation : Do mimic Avicennia and Rhizophora roots retain or donate leaves? Mar. Ecol. Prog. Ser. 551: 107-115.
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Mangrove forest; Connectivity; Ecosystem engineer; Flume; Hydrodynamics; Nutrients; Seascape; Particulate organic matter

Authors  Top 
  • Gillis, L.G
  • Zimmer, M.
  • Bouma, T.J., more

    Mangrove forests are typically located in the catchment areas of the terrestrial zoneand can be adjacent to oceanic ecosystems (e.g. seagrass beds and coral reefs). These forests arethought to provide ecosystem services by retaining particulate organic matter such as detritalleaves that can facilitate nutrient-sensitive seagrass beds and coral reefs. However, there is ascarcity of knowledge about the mechanisms that control leaf retention. In this study, using aflume and mimic mangrove roots, we aimed to identify the physical (hydrodynamics, root densityand type) and biological (size and decay state of the leaf) parameters that control the retention ofleaves within these mangrove forests. Our study found that the majority (83 to 92%) of decayingleaves were retained within Rhizophora and Avicennia mimic roots. Only the mimic Rhizophoraroots trapped fresh fragmented leaves (25%); other drivers such as fragment size, root density andpresence of waves showed a significant difference in trapping leaves. These results suggest thatthe zonation of tree species and the hydrodynamics acting on roots can play an important role inthe leaf-trapping capacity of a mangrove forest. This information may be used in planning for conservationand restoration of these forests, especially with respect to facilitating the establishmentand expansion of connected ecosystems. However, further work in the field under more realistichydrodynamic conditions is needed to verify the results of this flume experiment.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors