IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord, SW Greenland)
Meire, L.; Mortensen, J.; Rysgaard, S.; Bendtsen, J.; Boone, W.; Meire, P.; Meysman, F.J.R. (2016). Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord, SW Greenland). J. Geophys. Res. 121(6): 1581-1592. https://dx.doi.org/10.1002/2015JG003240
In: Journal of Geophysical Research. American Geophysical Union: Richmond. ISSN 0148-0227, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine
Author keywords
    biogeochemical cycles; glaciers; fjord; Greenland Ice Sheet; spring bloom

Authors  Top 
  • Meire, L., more
  • Mortensen, J.
  • Rysgaard, S.
  • Bendtsen, J.
  • Boone, W.
  • Meire, P., more
  • Meysman, F.J.R., more

Abstract
    In high-latitude fjord ecosystems, the spring bloom accounts for a major part of the annual primary production and thus provides a crucial energy supply to the marine food web. However, the environmental factors that control the timing and intensity of these spring blooms remain uncertain. In 2013, we studied the spring bloom dynamics in Godthåbsfjord, a large fjord system adjacent to the Greenland Ice Sheet. Our surveys revealed that the spring bloom did not initiate in the inner stratified part of the fjord system but only started farther away from tidewater outlet glaciers. A combination of out-fjord winds and coastal inflows drove an upwelling in the inner part of the fjord during spring (April–May), which supplied nutrient-rich water to the surface layer. This surface water was subsequently transported out-fjord, and due to this circulation regime, the biomass accumulation of phytoplankton was displaced away from the glaciers. In late May, the upwelling weakened and the dominant wind direction changed, thus reversing the direction of the surface water transport. Warmer water was now transported toward the inner fjord, and a bloom was observed close to the glacier terminus. Overall, our findings imply that the timing, intensity, and location of the spring blooms in Godthåbsfjord are controlled by a combination of upwelling strength and wind forcing. Together with sea ice cover, the hydrodynamic regime hence plays a crucial role in structuring food web dynamics of the fjord ecosystem.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors