IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

A review of marine geomorphometry, the quantitative study of the seafloor
Lecours, V.; Dolan, F.J.; Micallef, A.; Lucieer, V.L. (2016). A review of marine geomorphometry, the quantitative study of the seafloor. Hydrol. Earth Syst. Sci. 20(8): 3207-3244. hdl.handle.net/10.5194/hess-20-3207-2016
In: Hydrology and Earth System Sciences. European Geosciences Union: Göttingen. ISSN 1027-5606, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Lecours, V.
  • Dolan, F.J.
  • Micallef, A.
  • Lucieer, V.L.

Abstract
    Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-dimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acoustic-based mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors