IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Isolation and characterization of different forms of thioredoxins from the green alga Acetabularia mediterranea: identification of an NADP/thioredoxin system in the extrachloroplastic fraction
Van Langendonckt, A.; Vanden Driessche, T. (1992). Isolation and characterization of different forms of thioredoxins from the green alga Acetabularia mediterranea: identification of an NADP/thioredoxin system in the extrachloroplastic fraction. Arch. Biochem. Biophys. 292(1): 156-164. hdl.handle.net/10.1016/0003-9861(92)90064-4
In: Archives of biochemistry and biophysics. ELSEVIER SCIENCE INC: San Diego, CA,. ISSN 0003-9861, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Van Langendonckt, A.
  • Vanden Driessche, T.

Abstract
    A procedure has been developed for the simultaneous purification to apparent homogeneity of chloroplast thioredoxins f and m, and nonchloroplast thioredoxin h, from the green alga Acetabularia mediterranea. In the chloroplast fraction, three thioredoxins were isolated: one f type thioredoxin (Mr 13.4 kDa) and two m type thioredoxin forms (Mr of 12.9 and 13.8 kDa). A Western blot analysis of crude and purified chloroplast thioredoxin preparations revealed that Acetabularia thioredoxin m was immunologically related to its higher-plant counterparts whereas thioredoxin f was not. In the nonchloroplast fraction, a single form of thioredoxin h (Mr 13.4 kDa) and its associated enzyme NADP-thioredoxin reductase (NTR) were evidenced. Acetabularia NTR was partially purified and shown to be an holoenzyme composed of two 33.0-kDa subunits as is the case for other plant and bacterial NTRs. Similarity was confirmed by immunological tests: the algal enzyme was recognized by antibodies to spinach and Escherichia coli NTRs. Acetabularia thioredoxin h seemed to be more distant from higher-plant type h thioredoxins as recognition by antibodies to thioredoxin h from spinach and wheat was weak. The algal thioredoxin h was also slightly active with spinach and E. coli NTRs. These results suggest that in green algae as in the green tissues of higher plants the NADP and chloroplast thioredoxin systems are present simultaneously, and might play an important regulatory role in their respective cellular compartments.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors