IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Salt-/fresh-water interface model and GAs for parameter estimation
El Harrouni, K.; Ouazar, D.; Cheng, A.H.-D. (1999). Salt-/fresh-water interface model and GAs for parameter estimation, in: De Breuck, W. et al. (Ed.) Proceedings of the 15th Salt-Water Intrusion Meeting Ghent (Belgium), 25-29 May 1998. Natuurwetenschappelijk Tijdschrift, 79(1-4): pp. 43-47
In: De Breuck, W.; Walschot, L. (Ed.) (1999). Proceedings of the 15th Salt-Water Intrusion Meeting Ghent (Belgium), 25-29 May 1998. Natuurwetenschappelijk Tijdschrift, 79(1-4). Natuurwetenschappelijk Tijdschrift: Gent, Belgium. 307 pp., more
In: Natuurwetenschappelijk Tijdschrift. L. Walschot/Natuur- en Geneeskundige Vennootschap: Gent. ISSN 0770-1748, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Proceedings D [27347]
Document type: Conference paper

Keywords
    Algorithms; Fresh water; Models; Saline water; Marine; Fresh water

Authors  Top 
  • El Harrouni, K.
  • Ouazar, D.
  • Cheng, A.H.-D.

Abstract
    Genetic Algorithms (GAs) have been applied with great success in a number of fields as tools for optimization. This paper presents an application of GAs for parameter estimation in salt-water intrusion. A Simple Genetic Algorithm (SGA) based on selection, mutation and crossover operators, and conventional binary string to represent the estimated parameters, is selected as the optimization tool. The coupled finite-elements sharp-interface approach, as computational purpose, is formulated in terms of two basic variables; namely, the head in one of the fluids (fresh water) and the depth of the interface. Two-parameter estimation problems are solved for simultaneous identification of different aquifer parameters, using some fresh-waterhead and interface-depth observations. Based on the least-squares approach, the sum of the squared differences between the observed and predicted values using the estimated parameters is minimized. The initial findings about the effectiveness of the algorithms are encouraging.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors