IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Bioaccumulation of PCBs in the cuttlefish Sepia officinalis from seawater, sediment and food pathways
Danis, B.; Bustamante, P.; Cotret, O.; Teyssié, J.L.; Fowler, S.W.; Warnau, M. (2005). Bioaccumulation of PCBs in the cuttlefish Sepia officinalis from seawater, sediment and food pathways. Environ. Pollut. 134(1): 113-122. https://dx.doi.org/10.1016/j.envpol.2004.07.010
In: Environmental Pollution. Elsevier: Barking. ISSN 0269-7491; e-ISSN 1873-6424, more
Peer reviewed article  

Available in  Authors 

Keywords
    Cephalopoda [WoRMS]
    Marine/Coastal
Author keywords
    cephalopods; persistent organic pollutants; kinetics; transfer;distribution

Authors  Top 
  • Danis, B., more
  • Bustamante, P.
  • Cotret, O.
  • Teyssié, J.L.
  • Fowler, S.W.
  • Warnau, M.

Abstract
    The cuttlefish Sepia officinalis was selected as a model cephalopod to study PCB bioaccumulation via seawater, sediments and food. Newly hatched, juvenile cuttlefish were exposed for 17 days to environmentally realistic concentrations of 14C-labeled 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB#153) (18 ng PCB l−1 seawater; 30 ng PCB g−1 dry wt sediments; Artemia salina exposed to 18 ng PCB l−1 seawater). Accumulation of PCB#153 was followed in three body compartments: digestive gland, cuttlebone and the combined remaining tissues. Results showed that (1) uptake kinetics were source- and body compartment-dependent, (2) for each body compartment, the accumulation was far greater when S. officinalis was exposed via seawater, (3) the cuttlebone accumulated little of the contaminant regardless of the source, and (4) the PCB congener showed a similar distribution pattern among the different body compartments following exposure to contaminated seawater, sediment or food with the lowest concentrations in the cuttlebone and the highest in the remaining tissues. The use of radiotracer techniques allowed delineating PCB kinetics in small whole organisms as well as in their separate tissues. The results underscore the enhanced ability of cephalopods to concentrate organic pollutants such as PCBs, and raise the question of potential risk to their predators in contaminated areas.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors