IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Structural peculiarities of the tubercles in the skin of the turbot, Scophthalmus maximus (L., 1758) (Osteichthyes, Pleuronectiformes, Scophthalmidae)
Zylberberg, L.; Chanet, B.; Wagemans, F.; Meunier, F.J. (2003). Structural peculiarities of the tubercles in the skin of the turbot, Scophthalmus maximus (L., 1758) (Osteichthyes, Pleuronectiformes, Scophthalmidae). J. Morphol. (1931) 258(1): 84-96.
In: Journal of Morphology (1931). The Wistar Institute Press/Wiley: Philadelphia, Pa . ISSN 0362-2525, more
Peer reviewed article  

Available in  Authors 

    Pleuronectiformes [WoRMS]; Scophthalmus Rafinesque, 1810 [WoRMS]; Marine
Author keywords
    scales; Scophthalmus (turbot); morphology; ultrastructure;mineralization; Pleuronectiformes

Authors  Top 
  • Zylberberg, L.
  • Chanet, B.
  • Wagemans, F.
  • Meunier, F.J.

    The structure of the bony tubercles of the turbot, Scophthalmus maximus (L., 1758), was examined using ground sections, microradiography, SEM, and TEM. The tubercles are small, isolated, mineralized conical plates randomly distributed in the eyed side of the body. They are composed of three layers: the outer limiting layer, the external layer, and the basal plate, which make up the thin and flat elasmoid scales of Teleostei. The main difference between regular elasmoid scales and bony tubercles lies in the organization and the growth of the basal plate. Indeed, the conical shape of the tubercle is the result of a prominent thickening of the central part of the basal plate where the collagen matrix is organized in a complicated three-dimensional network. Densely packed thick collagen fibrils form superimposed plies organized in a plywood-like structure that resembles that of the elasmoid scales but it is criss-crossed by numerous vertical sheets of thin collagen fibrils. The tubercles originate from thin and flat plates located in the skin of larvae and juveniles, whose structure is that of regular-developing elasmoid scales. Thus, the tubercles of Scophthalmus maximus could be considered as modified elasmoid scales rather than bony structures. They might be the result of specific arrangements related to the general trend of reduction of the dermal skeleton in the teleostean lineage.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors