IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Global patterns in marine predatory fish
van Denderen, P.D.; Lindegren, M.; MacKenzie, B.R.; Watson, R.A.; Andersen, K.H. (2017). Global patterns in marine predatory fish. Nature Ecology & Evolution 2(1): 65-70. https://hdl.handle.net/10.1038/s41559-017-0388-z
In: Nature Ecology & Evolution. Springer Nature. ISSN 2397-334X, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • van Denderen, P.D.
  • Lindegren, M.
  • MacKenzie, B.R., more
  • Watson, R.A.
  • Andersen, K.H.

Abstract
    Large teleost (bony) fish are a dominant group of predators in the oceans and constitute a major source of food and livelihood for humans. These species differ markedly in morphology and feeding habits across oceanic regions; large pelagic species such as tunas and billfish typically occur in the tropics, whereas demersal species of gadoids and flatfish dominate boreal and temperate regions. Despite their importance for fisheries and the structuring of marine ecosystems, the underlying factors determining the global distribution and productivity of these two groups of teleost predators are poorly known. Here, we show how latitudinal differences in predatory fish can essentially be explained by the inflow of energy at the base of the pelagic and benthic food chain. A low productive benthic energy pathway favours large pelagic species, whereas equal productivities support large demersal generalists that outcompete the pelagic specialists. Our findings demonstrate the vulnerability of large teleost predators to ecosystem-wide changes in energy flows and hence provide key insight to predict the responses of these important marine resources under global change.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors