IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide
Laruelle, G.G.; Cai, W.-J.; Hu, X.; Gruber, N.; Mackenzie, F.T.; Regnier, P. (2018). Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nature Comm. 9(1): 11 pp. https://hdl.handle.net/10.1038/s41467-017-02738-z
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Laruelle, G.G., more
  • Cai, W.-J.
  • Hu, X.
  • Gruber, N.
  • Mackenzie, F.T.
  • Regnier, P., more

Abstract
    It has been speculated that the partial pressure of carbon dioxide (pCO2) in shelf waters may lag the rise in atmospheric CO2. Here, we show that this is the case across many shelf regions, implying a tendency for enhanced shelf uptake of atmospheric CO2. This result is based on analysis of long-term trends in the air–sea pCO2 gradient (ΔpCO2) using a global surface ocean pCO2 database spanning a period of up to 35 years. Using wintertime data only, we find that ΔpCO2 increased in 653 of the 825 0.5° cells for which a trend could be calculated, with 325 of these cells showing a significant increase in excess of +0.5 μatm yr−1 (p < 0.05). Although noisier, the deseasonalized annual data suggest similar results. If this were a global trend, it would support the idea that shelves might have switched from a source to a sink of CO2 during the last century.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors