IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Variability in δ13 C values between individual Daphnia ephippia: Implications for palaeo-studies
Schilder, J.; van Roij, L.; Reichart, G.-J.; Sluijs, A.; Heiri, O. (2018). Variability in δ13 C values between individual Daphnia ephippia: Implications for palaeo-studies. Quat. Sci. Rev. 189: 127-133.
In: Quaternary Science Reviews. Pergamon Press: Oxford; New York. ISSN 0277-3791; e-ISSN 1873-457X, more
Peer reviewed article  

Available in  Authors 

    Daphnia O.F. Müller, 1785 [WoRMS]
Author keywords
    Daphnia ephippia; Stable carbon isotopes; Laser ablation; Lakes; Seasonality; Present; Palaeolimnology; Europe; Stable isotopes

Authors  Top 
  • Schilder, J.
  • van Roij, L.
  • Reichart, G.-J., more
  • Sluijs, A.
  • Heiri, O.

    The stable carbon isotope ratio (δ13 C value) of Daphnia spp. resting egg shells (ephippia) provides information on past changes in Daphnia diet. Measurements are typically performed on samples of _20 ephippia, which obscures the range of values associated with individual ephippia. Using a recently developed laser ablation-based technique, we perform multiple δ13 C analyses on individual ephippia, which show a high degree of reproducibility (standard deviations 0.1e0.5‰). We further measured δ13 C values of 13 ephippia from surface sediments of three Swiss lakes. In the well-oxygenated lake with low methane concentrations, δ13 C values are close to values typical for algae (_31.4‰) and the range in values is relatively small (5.8‰). This variability is likely driven by seasonal (or inter-annual) variability in algae δ13 C values. In two seasonally anoxic lakes with higher methane concentrations, average values were lower (_41.4 and _43.9‰, respectively) and the ranges much larger (10.7 and 20.0‰).We attribute this variability to seasonal variation in incorporation of methane-derived carbon. In one lake we identify two statistically distinct isotopic populations, which may reflect separate production peaks. The potentially large within-sample variability should be considered when interpreting small-amplitude, short-lived isotope excursions based on samples consisting of few ephippia. We show that measurements on single ephippia can be performed using laser ablation, which allows for refined assessments of past Daphnia diet and carbon cycling in lake food webs. Furthermore, our study provides a basis for similar measurements on other chitinous remains (e.g. from chironomids, bryozoans).

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors